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How Do Drivers Allocate Their Potential Attention? Driving Fixation Prediction
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Abstract— The traffic driving environment is a complex and dynamic1

changing scene in which drivers have to pay close attention to salient2

and important targets or regions for safe driving. Modeling drivers’3

eye movements and attention allocation in traffic driving can also help4

guiding unmanned intelligent vehicles. However, until now, few studies5

have modeled drivers’ true fixations and allocations while driving. To this6

end, we collect an eye tracking dataset from a total of 28 experienced7

drivers viewing 16 traffic driving videos. Based on the multiple drivers’8

attention allocation dataset, we propose a convolutional-deconvolutional9

neural network (CDNN) to predict the drivers’ eye fixations. The10

experimental results indicate that the proposed CDNN outperforms11

the state-of-the-art saliency models and predicts drivers’ attentional12

locations more accurately. The proposed CDNN can predict the major13

fixation location and shows excellent detection of secondary important14

information or regions that cannot be ignored during driving if they exist.15

Compared with the present object detection models in autonomous and16

assisted driving systems, our human-like driving model does not detect17

all of the objects appearing in the driving scenes, but it provides the most18

relevant regions or targets, which can largely reduce the interference of19

irrelevant scene information.20

Index Terms— Fixation prediction, visual attention, eye tracking, con-21

volutional neural networks, traffic driving.22

I. INTRODUCTION23

HUMAN-CENTRIC advanced driver assistance systems24

(ADAS), such as collision avoidance systems, blind spot25

control, and lane change assistance, have significantly improved the26

safety and comfort of driving. Among the ADAS solutions, the most27

ambitious example is the monitoring system [1]–[3]. It is expected28

to parse the driver’s attentional behaviors as well as the road scene29

to predict the potential unsafe maneuvers and then have the car react30

to avoid danger either by signaling the driver or by braking.31

In fact, the traffic driving environment is a complex and dynamic32

changing scene in which many objective and subjective factors fuse33

together and govern the driver’s gaze and attention automatically.34

These factors can be bottom-up sensory stimulus, such as a posted35

speed limit sign or traffic lights, and they can also be top-down36

aims or experiences, such as looking for a gas station or recalling37

a nearby restaurant. During traffic driving, drivers usually allocate38
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their attention to the most important and salient region or target at 39

the current second. Sometimes, there may be more than one salient 40

region or target that drivers should focus on. For example, drivers 41

must notice the traffic light and the roadside pedestrians when 42

crossing a busy crossroad. Understanding how drivers allocate 43

their potential attention and where/what drivers mainly look at 44

are important and challenging problems for driving assistance 45

systems. 46

Traffic saliency detection, which computes the important and 47

salient regions or objects that drivers should care about in a given 48

driving environment, is a hot topic in intelligent vehicle systems. 49

Many algorithms and models have been proposed to predict the traffic 50

saliency or drivers’ attention [4]. Some researchers utilized driver 51

monitoring systems to estimate drivers’ gaze direction or fixation 52

region from head pose and eye location cues [5]–[7]. Bremond et al. 53

[8] presented a visual saliency model based on a nonlinear support 54

vector machine (SVM) classifier for the detection of traffic signs. 55

Pugeault et al. analyzed drivers’ pre-attention at T junctions [9]. The 56

authors studied the looked-but-failed-to-see effect by analyzing the 57

object saliency. There are some other studies focusing on drivers’ 58

head orientations by detecting facial landmarks [5], [10]–[12]. 59

However, these studies lack the prediction of the drivers’ true 60

fixation during the driving task. Our previous studies [13], [14] 61

analyzed the eye tracking data of 20 experienced drivers when 62

viewing traffic images and then proposed a bottom-up and top-down 63

combined saliency detection model via the random forest learning 64

method to predict drivers’ direct attentional area [15]. However, 65

the work was based on static images, which was not suited for the 66

prediction of a complex dynamic traffic video stream. In the field 67

of computer vision, there are some natural saliency image/video 68

datasets and saliency models, such as the MIT benchmark [16], 69

the SLICON dataset [17], and Action in the Eye [18], but they 70

do not aim at specific driving scenes. Recently, Alletto et al. [19] 71

recorded one driver’s eye tracking video during actual driving and 72

built a publicly available video dataset (DR(eye)VE). The distribution 73

of eye tracking data depended on the characteristics of the driver (e.g., 74

driving proficiency level or culture [20]). Palazzi et al. [21] proposed 75

an attention prediction model based on the DR(eye)VE dataset using 76

the deep learning method. Tawari and Kang [22] proposed a Bayesian 77

framework to model the visual attention of a human driver and 78

developed a fully convolutional neural network to detect the salient 79

region based on the DR(eye)VE dataset. 80

Although DR(eye)VE is a good public dataset that consists 81

of 74 videos and eight drivers’ eye tracking data while real driving, 82

the data collection scheme determines only one driver’s attention 83

to be recorded on each video. Therefore, the models based on 84

DR(eye)VE can predict only one salient region, and they cannot 85

predict drivers’ endogenous attentional allocation when two or more 86

salient targets or regions must be focused on, as mentioned above. 87

In order to solve the problem, we did the following works: 88

• We built a traffic driving video dataset based on an eye 89

movement experiment that recorded 28 experienced drivers’ eye 90

tracking data. 91
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• Based on the dataset, we proposed a traffic video saliency detec-92

tion model with compact convolutional-deconvolutional neural93

networks (CDNN) to predict the drivers’ fixation location. The94

CDNN network was trained by multiple drivers’ eye tracking95

data and contained bottom-up and top-down information related96

to traffic driving.97

• Finally, we compared our model with other methods. The98

experimental results demonstrated that our model can predict99

the drivers’ fixational areas more accurately.100

Moreover, by taking advantage of multiple drivers’ attention experi-101

ences, our model can predict the drivers’ potential attention alloca-102

tion, including the main target or region and also the secondary one if103

it exists. Compared with the state-of-the-art object detection models104

in autonomous and assisted driving systems, such as the Faster105

Region-CNN (RCNN), Mask RCNN and YOLO, our model did not106

detect all of the objects appearing in the driving scenes. Rather,107

it provided the most relevant regions or targets, which can largely108

reduce the interference of irrelevant scene information. We made the109

dataset and source code of our method publicly available.1110

II. EYE TRACKING DATA111

In this section, an eye movement experiment was designed to112

collect drivers’ eye tracking data while viewing the driving videos.113

A. Participants114

Twenty-eight participants took part in the eye movement exper-115

iment, including 12 females and 16 males that ranged from 23 to116

43 years old (M=32.0; SD=6.4). The participants were required to117

be drivers who had at least 2 years driving experience and drove a118

car frequently. As a result, their driving experience ranges from 2 to119

16 years (M=5.7; SD=3.8). All participants had normal or corrected-120

to-normal vision and were provided with written informed consent121

prior to participation. The experimental paradigms were approved122

by the Ethics and Human Participants in Research Committee at123

the University of Electronic Sciences and Technology of China in124

Chengdu, China.125

B. Stimuli and Apparatus126

The visual material consisted of 16 traffic driving videos, as illus-127

trated as Fig. 1. Each traffic video was collected by a driving recorder128

while the cars were running on an urban road. The videos lasted129

from 52 to 181 seconds (M=161.4; SD=38.0), had a resolution130

of 1280×720 pixels (34.2×19.2 squared degrees of visual angle), and131

had a frame rate of 30 frames per second. Participants were seated132

57 cm away from a 21-inch CRT monitor with a spatial resolution133

of 1280×1024 pixels and a refresh rate of 75 Hz. The head was134

stabilized with a chin and forehead rest. A steering wheel is placed135

in front of the participants who were asked to view the videos by136

assuming that they were driving a car. Eye movements were recorded137

using an eye-tracker (Eyelink 2000, SR Research, Eyelink, Ottawa,138

Canada) with a sampling rate of 1000 Hz and a nominal spatial139

resolution of 0.01 degree of visual angle.140

C. Procedure141

Before each participant viewed the stimuli videos, a calibration was142

run to ensure the accuracy of the eye tracking data. The calibration143

was repeated if the quality of eye tracking was not satisfactory. Each144

participant was asked to ‘task-view’ the 16 different traffic driving145

videos. The ‘task-view’ denoted that participants should view these146

1https://github.com/taodeng/CDNN-traffic-saliency

Fig. 1. Video samples recorded by driving recorders. Each video is
approximately 52 to 181 seconds, and its resolution ratio is 1280×720 pixels.

Fig. 2. Flow chart of the eye movement experiment.

Fig. 3. Example of eye tracking data and the corresponding fixation saliency
map. (a) Fixation points when 28 drivers view the videos. (b) eye tracking
data placed with a 2-D Gaussian distribution.

stimuli videos under a hypothetical driving attentional condition. 147

Each participant performed 8 blocks, and each block consisted of 2 148

trials. Each block cost approximately 6 minutes (calibration excluded) 149

with a 2 minute break between blocks. Overall, it took approximately 150

1 hour for a participant to complete the whole experiment. The video 151

sequences were shown to each subject in a random order, as illustrated 152

in Fig. 2. 153

D. Eye-Movement Analysis 154

The subjects’ eye fixations were recorded to construct the human 155

saliency map. In the eye tracking dataset, there were 28 drivers’ 156

fixation points that were recorded per video frame (Fig. 3(a)). The 157

drivers’ eye tracking data fitted with the 2-D Gaussian distribution 158

(Fig. 3(b)) were used as the ground truth in our work. By taking 159
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Fig. 4. CDNN architecture in our work.

advantage of multiple drivers’ attention experiences, the dataset160

included both the primary salient region and the secondary one if161

it existed. Figure 3 illustrates an example of two salient regions that162

drivers may pay attention to under certain situations.163

III. FIXATION PREDICTION BASED ON A CONVOLUTIONAL164

NEURAL NETWORK165

A. Convolutional-Deconvolutional Neural Network166

The choice of the architecture is very important when utilizing a167

neural network framework. In this paper, we propose a convolutional-168

deconvolutional neural network (CDNN) inspired by U-Net [23] to169

predict the drivers’ fixation locations in traffic scenes. The CDNN170

architecture is shown in Fig. 4.171

The CDNN consists of a contracting path (convolution) and an172

expansive path (deconvolution). The contracting path follows the173

typical architecture of a convolutional network. This path consists of174

the repeated application of two 3×3 convolutions, each followed by a175

rectified linear unit (ReLU), batch normalization (BN) and a 2×2 max176

pooling operation with a stride of 2 for downsampling. Every step177

in the expansive path consists of an upsampling of the feature178

map followed by a 2×2 convolution (deconvolution) that halves the179

number of feature channels, a concatenation with the corresponding180

feature map from the contracting path, and two 3×3 convolutions,181

each followed by a ReLU and BN. Table I shows more details of the182

convolutional-deconvolutional network.183

Although the architecture of CDNN is similar with U-Net, there are184

some differences between them. The aim of the proposed CDNN is185

to predict the drivers’ fixation and attention allocation, so calculation186

complexity and speed are important considerations for potential187

application. A shallow convolutional network layer is chosen in our188

work, so the parameters of CDNN are less than U-Net. We set the189

padding parameter as 0 at the maxpooling layer so that the model190

can make full use of the edge information for saliency detection.191

Besides, each convolution and deconvolution layer include a batch192

normalization operation that allows each layer to learn independently193

by itself and reduce the overfitting.194

B. Loss Function195

We choose the binary cross entropy during the training phase. The196

loss function L(S, Ŝ) is defined between the predicted saliency map197

TABLE I

THE DETAILED PARAMETERS OF THE CONVOLUTIONAL-
DECONVOLUTIONAL NEURAL NETWORK

Ŝ and its corresponding ground truth fixation saliency map S. 198

L BC E (S, Ŝ) = − 1

N

N∑

i=1

Si log(Ŝi ) + (1 − Si ) log(1 − Ŝi ) (1) 199

where Si denotes the i th pixel of the fixation saliency map S, Ŝi is 200

the i th pixel of predicted saliency map Ŝ, N is the total number of 201

pixels. 202
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Fig. 5. Qualitative assessment of our proposed model and the classical state-of-the-art methods. From left to right: the input frames, the ground truth fixation
maps, our predicted saliency maps, and the predictions of MLNet [25], GBVS [26], Image Signature [27], Itti [28] and HFT [29].

IV. RESULTS203

In this section, we first describe the preparation of the drivers’204

eye tracking dataset. The training and testing datasets are composed205

of these video frames and the corresponding saliency maps. Then,206

we train the proposed CDNN with the training set and evaluated the207

performance of the model with the testing set both qualitatively and208

quantitatively.209

A. Dataset210

In our experiments, the dataset is divided into three subsets. Ten211

videos are used as the training set, 2 videos are used as the validating212

set and 4 videos were used as the testing set. All of these videos213

are untrimmed videos, but the first five frames and last five frames214

are deleted to ensure the accuracy of the eye tracking recording.215

There are 49035 frames in the training phase and 6655 frames in216

the validating phase. A total of 19135 frames are used to test the217

performance of the prediction model.218

All of these training frames are randomly input into the model219

during the training phase. The Adam optimizer with the parameters220

as suggested in the original paper [24] is applied in this work. The221

learning rate is set to 10−3, with the momentum and weight decay222

valued as 0.9 and 10−4, respectively. To reduce the training time,223

the video frames are resized to 320×192. The model is trained using224

a GPU server consisting of four NVIDIA TITAN Xp 12 GB GPUs225

and two Intel Xeon E5-2673 v3 CPUs. The CDNN implementation226

is based on PyTorch.227

TABLE II

INDICATORS OF SIMILARITY AND DISSIMILARITY BETWEEN

THE PREDICTION AND THE GROUND TRUTH

B. Qualitative Evaluation 228

Figure 5 presents a visual comparison of our model and some 229

state-of-the-art saliency models, i.e., Multi-Level Net (MLNet) [25], 230

Graph-based Visual Saliency (GBVS) [26], Image Signature [27], 231

Itti [28], and Hypercomplex Fourier Transform (HFT) [29]). The 232

predicted saliency maps are overlaid with original traffic images for 233

better viewing. The results show that our prediction model can predict 234

the drivers’ fixational areas more accurately than the classical saliency 235

models can. In Fig. 5, we can see that the state-of-the-art saliency 236

models show excellent prediction of traffic lights, traffic signs, cars 237

and some road lanes in traffic scenes. However, the models cannot 238

detect the most important top-down information about driving. They 239

match poorly against human eye tracking data. That is, the models 240

cannot predict drivers’ attention allocation precisely. By contrast, our 241

model can detect both the driving related bottom-up information (e.g., 242

traffic signs and nearby cars) and the important top-down information 243



IEE
E P

ro
of

DENG et al.: HOW DO DRIVERS ALLOCATE THEIR POTENTIAL ATTENTION? DRIVING FIXATION PREDICTION VIA CNN 5

(i.e., the right front of the driving road). Namely, our model can244

predict the drivers’ potential attention allocation accurately for both245

the main target or region and also the secondary one if it exists, which246

is consistent with the drivers’ driving experience. Please note that the247

last row in Fig. 5 is the result tested with tunnel scene. Our model248

shows a robust performance in a dark and faint tunnel environment,249

which indicates that our model can predict drivers’ fixation areas,250

even in severe scenes such as tunnels and night.251

Especially, a deep learning-based saliency model MLNet is also252

compared in this section. The MLNet is re-trained on our dataset. The253

fourth column of Fig. 5 shows some prediction results by MLNet.254

We can see that MLNet outperforms all the other bottom-up saliency255

models. However, it still cannot precisely predict all the drivers’256

fixation regions, for example, it does not detect the location of traffic257

sign in the third, fifth and sixth rows.258

C. Quantitative Evaluation Metrics259

To quantitatively compare the performance of our model with state-260

of-the-art saliency models, we employ two categories of saliency eval-261

uation metrics: location-based and distribution-based [16], [30], [31].262

Location-based metrics include the area under the ROC curve (AUC-263

Borji [32] and AUC-Judd [33], [34]), the normalized scanpath264

saliency (NSS [35]) and Information Gain (IG [36]), which indi-265

cate the similarity between the prediction and the ground truth.266

Distribution-based metrics include Pearson’s correlation coefficient267

(CC [37]), Kullback-Leibler divergence (KL-Div [16]), the Earth268

mover’s distance (EMD [38]), and Similarity (SIM [34]). CC and SIM269

are indicators of similarity, while EMD and KL-Div are indicators of270

dissimilarity between the prediction and the ground truth (Tab. II).271

Different metrics use different formats of the ground truth for evalu-272

ating saliency models. Location-based metrics consider the saliency273

map values at discrete fixation locations, while the distribution-based274

metrics treat the ground truth as continuous distributions. In other275

words, location-based metrics use the fixation point map (Fig. 3(a))276

as the ground truth and distribution-based metrics use the fixation277

saliency map (Fig. 3(b)) as the ground truth. In the following,278

the saliency evaluation metrics are introduced briefly.279

1) Area Under ROC Curve (AUC): Evaluating Saliency as a280

Classifier of Fixations: In [32], Borji et al. proposed a variant of281

the AUC called the AUC-Borji. It uses a uniform random sample282

of image pixels as negatives and defines the saliency map values of283

pixels that are above a threshold as false positives. Judd et al. [33],284

[34] proposed a variant of the AUC called the AUC-Judd consisting285

of the true positive rate (TP rate) and the false positive rate (FP rate).286

2) Normalized Scanpath Saliency (NSS): Measuring the Normal-287

ized Saliency at Fixations: The NSS metric quantifies the saliency288

map values at the eye fixation locations and computes the average289

normalized saliency at all fixations as follows:290

N SS = 1

N
∗

∑

i=1

Ŝ(xi , yi ) − μŜ
σŜ

(2)291

where (xi , yi ) is the location of one fixation point, μŜ and σŜ are292

the mean and standard deviation of the prediction saliency map Ŝ,293

respectively. N SS = 1 indicates that the subject’s eye position falls294

within a region where the predicted density is one standard deviation295

above the average, while N SS = 0 means that the model performs296

at a chance level [13], [39].297

3) Information Gain (IG): Evaluating Information Gain Over a298

Baseline: Information gain metric [36] is an information theoretic299

method that measures saliency model performance beyond systematic300

bias. Given a binary map of fixations SB , a saliency map Ŝ, and a301

baseline map B, information gain is computed as: 302

I G(Ŝ, SB) = 1

N

N∑

i

SB[log2(ε + Ŝi ) − log2(ε + Bi )] (3) 303

where i indexes the i th pixel, N is the total number of fixated 304

pixels, ε is for regularization constant (ε = 2.2204e-16 in MATLAB), 305

and information gain is measured in bits per fixation. In this work, 306

the center bias saliency map is regarded as baseline map B. This 307

metric measures the average information gain of the saliency map 308

over the center prior baseline at fixated locations (i.e., where SB = 309

1). A score above zero indicates the saliency map predicts the fixated 310

locations better than the center prior baseline. 311

4) Pearson’s Correlation Coefficient (CC): Evaluating the Linear 312

Relationship Between Distributions: Pearson’s correlation coefficient, 313

also called the linear correlation coefficient, is a statistical method 314

used generally for measuring how correlative or dependent two 315

variables are. The linear CC output ranges is between -1 and 1 and 316

is calculated as follows: 317

CC = cov(Ŝ, S)

σŜ ∗ σS
(4) 318

where S is the fixation saliency map, and σ is the standard deviation. 319

It means that the maps are correlated when the correlation value is 320

close to -1 and 1. A score of 0 indicates that the maps are completely 321

uncorrelated. 322

5) Similarity (SIM): Measuring the Intersection Between Distribu- 323

tions: The similarity metric [34] also uses the normalized probability 324

distributions of the predicted saliency map Ŝ and human fixation 325

saliency map S as follows: 326

SI M =
N∑

i=1

min(S(i), Ŝ(i)) (5) 327

where 328

N∑

i

S(i) =
N∑

i

Ŝ(i) =1 (6) 329

SI M = 1 indicates the distributions are the same, while SI M = 0 330

indicates no overlap. 331

6) Kullback-Leibler Divergence (KL-Div): Evaluating Saliency 332

With a Probabilistic Interpretation: The Kullback-Leibler divergence 333

is a general information theoretic measure of the difference between 334

two probability distributions. It is calculated as follows: 335

K Ldiv =
N∑

i=1

S(i) ∗ log(
S(i)

Ŝ(i) + ε
+ ε) (7) 336

where N is the number of pixels and ε is a regularization constant (ε 337

= 2.2204e-16 in MATLAB) that is used to avoid the log and division 338

by zero. The S and Ŝ distributions are both normalized as follows: 339

Norm(i) = Norm(i)
∑N

i=1 Norm(i) + ε
, Norm = {S, Ŝ} (8) 340

The K Ldiv = 0 indicates that the two maps are strictly equal [30]. 341

7) Earth Mover’s Distance (EMD): Incorporating Spatial Distance 342

Into Evaluation: The Earth mover’s distance metric is a measure of 343

the distance between two probability distributions over a region. 344

E M D = min{ fi j }
∑

i, j

fi j di j +
∣∣∣∣∣∣

∑

i

Si −
∑

j

Ŝ j

∣∣∣∣∣∣
max
i, j

di j (9) 345

s.t . fi j ≥ 0,
∑

j

fi j ≤ Si ,
∑

i

fi j ≤ Ŝ j , (10) 346
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TABLE III

PERFORMANCE COMPARISON OF OUR MODEL WITH THE STATE-OF-THE-ART SALIENCY MODELS USING MULTIPLE EVALUATION METRICS.
DIFFERENT TYPE OF GROUND TRUTH IS USED FOR VARIOUS METRICS

TABLE IV

PERFORMANCE COMPARISON OF THE RESIDUAL AND THE DEFORMED RESIDUAL UNIT WITH OUR PROPOSED ORIGINAL CDNN MODEL

TABLE V

TRAINING COST COMPARISON OF THE DIFFERENT NETWORK
STRUCTURES. CDNN IS MUCH FASTER THAN OTHERS

and347

∑

i, j

fi j = min(
∑

i

Si −
∑

j

Ŝ j ) (11)348

where each fi j represents the amount transported from the i th supply349

to the j th demand. dth is the ground distance between the i th and j th
350

points in the distribution. Starting from zero, a larger EMD indicates351

a larger overall difference between the two distributions.352

Table III shows the quantitative performance of our proposed353

model compared with other state-of-the-art saliency models [25]–[29]354

using the aforementioned evaluation metrics. The first row Human355

represents the fixation saliency map of drivers (Fig. 3(b)).356

As expected, our proposed model (last row of Table III) shows the357

highest similarity and lowest dissimilarity with the ground truth.358

We can draw a conclusion that the proposed CDNN architecture can359

predict human’s fixation area more precisely than other models can.360

D. Performance Comparison With Residual and Deformed Residual361

Networks362

He et al. [40] proposed a deep residual learning named ResNet363

(Fig. 6(a)). Moreover, they improved the ResNet (Fig. 6(b)) [41]. The364

Fig. 6. (a) Basic residual unit. (b) Deformed residual unit.

authors analyzed the propagation formulations behind the residual 365

building blocks in the revised ResNet, which suggested that the 366

forward and backward signals could be directly propagated from one 367

block to any other block. Here, their methods are also applied in our 368

CDNN model at each convolutional phase. 369

We compare these results with those of our original model 370

in Table IV. The results show that the prediction of the deformed 371

ResNet is slightly better than that of the basic ResNet, which is 372

consistent with the authors’ results [41]. The AUC, NSS and IG 373

evaluation metrics of our CDNN model are slightly smaller than those 374

of ResNet. However, the CC, KL-Div, EMD and SIM of our CDNN 375

model are the best. More importantly, Table V shows that the original 376

CDNN costs only 19 hours to train the frames, which is much faster 377

than ResNet is. 378
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Fig. 7. Our trained model tests on the DR(eye)VE dataset. (a) The input frames that the camera recorded. (b) The driver’s fixation maps in DR(eye)VE.
(c) The salient regions predicted by our model. The red circles label the location of a biker.

Fig. 8. Comparison with YOLOv3 object detection model. (a) The input frames that the camera recorded in our dataset. (b) The driver’s fixation maps.
(c) The salient regions predicted by our model. (d) The objects detected by the YOLOv3 model. The yellow rectangles mark the location of the detected cars
and label the object category.

V. DISCUSSION379

Palazzi et al. [19], [21] recently built the DR(eye)VE dataset380

that consists of 74 videos, and each video lasts 5 minutes. The381

dataset provides videos both from a roof-mounted camera and a head382

mounted camera. The dataset comes from eight drivers’ eye tracking383

data while driving. However, there is only one driver’s eye tracking384

data on each video.385

We use our trained model to test the DR(eye)VE videos. Fig. 7386

shows some results of our prediction using the DR(eye)VE dataset.387

Fig. 7(a) shows the input frames that the camera recorded. Fig. 7(b)388

shows the driver’s fixation maps of DR(eye)VE, and Fig. 7(c) gives389

the predicted salient regions using our model. Most of our predictions390

are consistent with the driver’s fixation region (the first row of Fig. 7),391

but some are not. For example, in the second and third rows of Fig. 7,392

we notice that there is a biker who is preparing to go across the street393

(red circle shown in the figures). We think that the biker is also an 394

important factor that the driver should consider for driving safety. 395

Since only one driver’s eye tracking data are recorded, DR(eye)VE 396

can give only one salient region, which is the most important area 397

that the driver is currently focusing on (right in front of the road), 398

as shown as Fig. 7(b). The location of the biker is ignored in the 399

DR(eye)VE eye tracking dataset. However, we find that our model 400

can predict both the most important driving information (right in 401

front of the road) and also the second most important information (the 402

biker), as shown in Fig. 7(c). This is because our model is trained with 403

multiple drivers’ eye tracking data, and thus, our model can detect 404

more driving-related information, including bottom-up and top-down 405

attention. 406

Although the DR(eye)VE dataset is composed by a real driving 407

eye-movement experiment, the data collection scheme determines 408

only single driver’s attention to be recorded on each video, so it 409
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cannot indicate multiple salient regions for the traffic driving scenes.410

By comparison, our dataset is constructed of 28 drivers’ attention,411

which may cover more key information related with driving safety.412

By taking advantage of the multiple drivers’ attention dataset, our413

model can predict the drivers’ potential attention allocation for both414

the main target or region and also the secondary/tertiary ones if they415

exist (the second and third rows of Fig. 7(c)).416

Currently, there are some state-of-the-art object detection models417

such as the Faster RCNN [42], Mask RCNN [43], and YOLO [44]–418

[46] that can detect all objects that appear in traffic scenes precisely419

and in real time. The detected objects include cars, bikers, traffic420

signs/lights, roads, pedestrians, and the sky. Some image segmen-421

tation methods have been used in commercial intelligent driving422

vehicles. All of the objects and areas that appear in the environment423

can be detected and recognized. However, we think that not all objects424

are critical and helpful for driving, for example static cars parking425

on the wayside, distant cars, pedestrians walking on the sidewalk,426

some irrelevant advertising signs and trees. We consider that these427

static or irrelevant objects could be the redundant information for428

driving. The objects may even interfere with the judgment and control429

of safe driving if an assistant system provides too many redundant430

objects.431

In Fig. 8, we compare our model with YOLOv3 [46], which is a432

state-of-the-art real-time object detection model trained on the COCO433

dataset, using our driving videos. Because YOLOv3 is one deep434

learning method that is dependent on the dataset, the first row of435

Fig. 8 shows that YOLOv3 cannot detect the traffic sign on the right436

roadside where drivers look in our dataset. In the second and third437

rows of Fig. 8, we can see that YOLOv3 can accurately detect all of438

the cars appearing in the traffic scenes. Actually, drivers do not gaze439

at all of the cars, but they allocate some attention to some key objects,440

such as crossing cars and related traffic signs. However, although the441

state-of-the-art object detection models can precisely discover and442

recognize all of the objects in driving scenes, some irrelevant objects443

are redundant information for drivers. These redundant detection444

results may interfere with the control of the intelligent driving system.445

Furthermore, the object detection results cannot indicate the drivers’446

attentional area, nor the drivers’ attention allocation. On the contrary,447

our model can not only detect the locations of safe driving related448

objects (selective attention ) but also show the attention allocation449

when driving. The deep red in the saliency map illustrates the most450

important area that the drivers should consider for driving safety,451

and the yellow or light blue shows the secondary/tertiary important452

areas. Therefore, we hope that the human-like driving method based453

on visual attention would be taken into account in future intelligent454

driving systems.455

VI. CONCLUSION456

In conclusion, in this paper, we provide a traffic driving video457

dataset with multiple drivers’ eye tracking data that includes bottom-458

up and top-down attention on traffic driving. We further propose a459

convolutional-deconvolutional neural network (CDNN) for predicting460

drivers’ eye fixations on traffic driving videos. The proposed network461

is trained by multiple drivers’ eye tracking data, and it also includes462

bottom-up and top-down visual attentional information on traffic463

driving. The experimental results indicate that the proposed CDNN464

outperforms the state-of-the-art saliency models and predicts drivers’465

fixation locations more accurately. The proposed CDNN can predict466

the major fixation locations, and it also shows excellent detection of467

secondary important regions that cannot be ignored during driving468

if it exists. Compared with the present object detection models in469

autonomous and assisted driving system, such as YOLOv3, our470

human-like driving model does not detect all of the objects appearing 471

in the driving scenes, but it provides the most important and relative 472

regions or targets, which can largely reduce the interference of 473

irrelevant scene information. 474

However, there are some limitations in our current work. For 475

example, the temporal information that is critically important for 476

video fixation prediction is not considered in our model. Some 477

temporal-spatial networks such as long short-term memory (LSTM) 478

network or optical flow model can be considered in the further work. 479

Besides, more driving video samples including various weather and 480

traffic environment can be trained and tested in the future study. 481
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